Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Pseudo-merohedrally twinned tetrakis(1 H -imidazole- $\kappa \mathrm{N}^{3}$)bis(N-nitrocyanamidato- κN)copper(II)

Jesús García Díaz, ${ }^{\text {a }}$ Jozef Kožíšek, ${ }^{\text {b }}$ * Marek Fronc, ${ }^{\text {b }}$ Anton Gatial, ${ }^{\text {b }}$ Ingrid Svoboda ${ }^{c}$ and Vratislav Langer ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Materials, Technological Institute of Morelia, Michoacán, México, ${ }^{\mathbf{b}}$ Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ${ }^{\text {c }}$ Strukturforschung, FB11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstraße 23, D-64287 Darmstadt, Germany, and department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
Correspondence e-mail: kozisek@cvt.stuba.sk

Received 7 January 2005
Accepted 14 February 2005
Online 11 March 2005
Crystals of the title complex, $\left[\mathrm{Cu}\left(\mathrm{CN}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right]$, the structure of which has been determined by single-crystal X-ray diffraction at 304 K , appear to be pseudo-merohedrally twinned. Transformation to a monoclinic C-centred cell was necessary in order to derive the twin law. Twin refinement in a triclinic unit cell significantly reduced the R value. The asymmetric unit of the triclinic cell consists of one molecule in a general position and two half entities with the Cu atom on a centre of inversion. The coordination of the Cu atom is quasioctahedral, with four imidazole N -atom donors in the equatorial plane and two cyano N atoms from the N-nitrocyanamidate anion in axial positions. Owing to symmetry in the centrosymmetric molecules, the trans imidazole ligands are parallel, while those in the noncentrosymmetric molecule make angles of $22.8(2)$ and 77.9 (2) ${ }^{\circ}$.

Comment

Non-linear pseudohalides, such as dicyanamide, $\mathrm{N}(\mathrm{CN})_{2}^{-}$, tricyanomethananide, $\mathrm{C}(\mathrm{CN})_{3}^{-}$, nitrosodicyanomethanide, $\mathrm{ONC}(\mathrm{CN})_{2}^{-}$, and nitrocyanoamide (nca), $\mathrm{O}_{2} \mathrm{NN}(\mathrm{CN})^{-}$, exhibit a rich variety of bonding modes for coordination in $3 d$ complexes (Jäger et al., 1997; Hvastijová et al., 1998; Kohout et al., 2000; Potočňák et al., 2001, 2002; Kožíšek et al., 2002; Díaz et al., 2003). A comparison of bond distances for compounds of the type $\left[M(\mathrm{NL})_{4}\left(\mathrm{NO}_{2} \mathrm{NCN}\right)_{2}\right][$ where $M=\mathrm{Co}, \mathrm{Ni}$ and Cu , and NL is a neutral ligand, such as iz (imidazole), pz (pyrazole) or meiz (1- or 5-methylimidazole)] found in the Cambridge Structural Database (CSD; Version 1.6, 2003 release; Allen, 2002) is shown in Table 3. For Ni and Cu compounds, neutral ligands were found in the equatorial plane
and anionic (nca) ligands in axial positions. In all previously solved crystal structures, except for CSD refcode OFILEU, (Hvastijová et al., 2001) the molecules are centrosymmetric.

Cell reduction for the crystal structure of the title compound, (I), revealed that the cell could be transformed to a monoclinic C-centred one, but $R_{\text {int }}$ and R_{σ} [defined as the sum of $\sigma\left(F^{2}\right)$ divided by the sum of F^{2}] were significantly better for the triclinic case (0.0301 and 0.0375 , respectively)

Figure 1
The atom-numbering scheme of (I). Displacement ellipsoids are shown at the 50% probability level.
than for a monoclinic lattice (0.0570 and 0.0483). The structure could be solved in the triclinic space group $P \overline{1}$ only, with many difficulties. During refinement, large positional shifts led to unreasonable molecular geometry, and additional peaks appeared in the difference map. This behaviour is typical of merohedral and pseudo-merohedral twins, which are formed when the metric symmetry of the unit cell is higher than that of its contents. Under these conditions, a matrix product (monoclinic to triclinic) \times (inversion) \times (triclinic to monoclinic $)=\left(001 / \frac{1}{2} \frac{1}{2} 0 / \frac{1}{2} \frac{1}{2} 0\right) \times(\overline{1} 00 / 0 \overline{1} 0 / 00 \overline{1}) \times(0 \overline{1} / 0 \overline{1} 1 / \overline{1} 00)$ (matrices written by rows) can be expressed as TWIN 10000 1010 in the SHELXL97 code (Sheldrick, 1997). The volume ratios of the twins refined to 0.5627 (8):0.4373 (8).

An interesting feature of the title compound is the presence of one non-centrosymmetric and two centrosymmetric molecules in the crystal structure (Fig. 1). Although the differences in $\mathrm{Cu}-\mathrm{N}_{\mathrm{NL}}$ bond distances are small, it might be supposed that the orientation of the imidazole ligands (and thus the interaction of π-electron density with $\mathrm{Cu}^{\mathrm{II}} d$-orbitals) could increase the asymmetry at the $\mathrm{Cu}^{\mathrm{II}}$ centre, the most pronounced distortion being in the axial direction [2.509 (3) and $2.570(3) \AA]$. It can be seen that all $\mathrm{Cu}-\mathrm{N}_{\mathrm{iz}}$ distances that are perpendicular to the N-nitrocyanoamide $/ \mathrm{Cu}^{\mathrm{II}} / \mathrm{imidazole}$ 'plane' are significantly shorter that the $\mathrm{Cu}-\mathrm{N}_{\mathrm{iz}}$ distances in the 'plane' $[\mathrm{Cu} 1-\mathrm{N} 7=1.998$ (3) $\AA, \mathrm{Cu} 1-\mathrm{N} 17=2.002$ (3) \AA, $\mathrm{Cu} 34-\mathrm{N} 35=2.015$ (3) \AA and $\mathrm{Cu} 51-\mathrm{N} 57=2.005(3) \AA]$. The greatest deviations from regular geometry are in the angles that contain atoms that are more tightly bonded (N7, N17, N35 and N57; see Table 1).

Figure 2
Packing diagram of (I), viewed along the a axis. Hydrogen-bond interactions are indicated by dashed lines.

For chromophore CuN_{6}, the CSD contains 45 crystal structures with monodentate nitrogen ligands and with no restrictions for centrosymmetry. However, only five of these structures have a non-centrosymmetric molecule [refcodes LAXTEJ (Otieno et al., 1993), LITVEP (Lipkowski et al., 1999), LOYROG (Dalai et al., 2002), MOGMUQ (Fedin et al., 2002) and SOFCEV (Kožǐšek et al., 1991)]. No crystal structure containing both centrosymmetric and non-centrosymmetric moieties was found. The greatest difference between the axial distances is in SOFCEV (2.372 and $2.500 \AA$).

The crystal structure of (I) is stabilized by a three-dimensional network of hydrogen bonds and van der Waals interactions (Fig. 2 and Table 2). The closest intermolecular contacts [$\mathrm{N} 9 \cdots \mathrm{O} 49=2.819$ (4) \AA, $\mathrm{N} 59 \cdots \mathrm{O} 33=2.832(4) \AA$ and $\mathrm{N} 19 \cdots \mathrm{O} 67=2.848$ (4) \AA] do not indicate significant $\pi-\pi$ interaction.

Experimental

A solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(2.0 \mathrm{mmol})$ in water $(3 \mathrm{ml})$ was mixed with a solution of $\mathrm{KNO}_{2} \mathrm{NCN}(4.0 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ and a solution of imidazole (4.0 mmol) in methanol (10 ml). This system was left to stand for a few days and blue crystals of $\left[\mathrm{Cu}\left(\mathrm{NCNNO}_{2}\right)_{2}(\mathrm{iz})_{4}\right]$ were isolated. The mid-IR vibrational spectrum was compared with those of $\mathrm{NaNO}_{2} \mathrm{NCN}$ and free imidazole. The comparison revealed that many vibration bands of the N-nitrocyanamide ligand (e.g. 2196 and $2189 \mathrm{~cm}^{-1}$ for the NCN asymmetric stretching vibration, 1171 and $1162 \mathrm{~cm}^{-1}$ for the NCN symmetric vibration, 1298 and $1284 \mathrm{~cm}^{-1}$ for the NO_{2} symmetric stretching vibration, 968 and $962 \mathrm{~cm}^{-1}$ for the $\mathrm{N}-\mathrm{N}$ stretching vibration, 551 and $540 \mathrm{~cm}^{-1}$ for the $\mathrm{C}-\mathrm{N}$ torsion, and 511 and $506 \mathrm{~cm}^{-1}$ for the NCN bending vibration) are split by only a few wavenumbers. Similar small splittings can also be seen on some imidazole ligand bands. These features may indicate the presence of more than one crystallographically independent molecule in the lattice.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{CN}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right]$
$M_{r}=507.95$
Triclinic, $P \overline{1}$
$a=9.841$ (2) \AA
$b=15.249$ (3) \AA
$c=15.234$ (3) \AA
$\alpha=104.17$ (2) ${ }^{\circ}$
$\beta=96.65$ (2) ${ }^{\circ}$
$\gamma=96.86$ (2) ${ }^{\circ}$
$V=2175.6$ (8) \AA^{3}
$Z=4$
$D_{x}=1.551 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1076 reflections
$\theta=2.4-19.0^{\circ}$
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=304$ (2) K
Block, blue
$0.36 \times 0.34 \times 0.11 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer
ω scans
Absorption correction: analytical face-indexed (CrysAlis RED; Oxford Diffraction, 2003)
$T_{\text {min }}=0.704, T_{\text {max }}=0.893$
14665 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.088$
$S=1.05$
8693 reflections
599 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.036 P)^{2}\right. \\
& +2.2497 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.65 \mathrm{e} \AA_{\circ}^{-3} \\
& \Delta \rho_{\text {min }}=-0.42 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 2$	$2.022(3)$	$\mathrm{Cu} 34-\mathrm{N} 45$	$2.548(4)$
$\mathrm{Cu} 1-\mathrm{N} 7$	$1.998(3)$	$\mathrm{Cu} 51-\mathrm{N} 52$	$2.020(3)$
$\mathrm{Cu} 1-\mathrm{N} 12$	$2.026(3)$	$\mathrm{Cu} 51-\mathrm{N} 57$	$2.005(3)$
$\mathrm{Cu} 1-\mathrm{N} 17$	$2.002(3)$	$\mathrm{Cu} 51-\mathrm{N} 62$	$2.549(3)$
$\mathrm{Cu} 1-\mathrm{N} 22$	$2.570(3)$	$\mathrm{N} 22-\mathrm{C} 23$	$1.151(4)$
$\mathrm{Cu} 1-\mathrm{N} 28$	$2.509(3)$	$\mathrm{N} 28-\mathrm{C} 29$	$1.161(5)$
$\mathrm{Cu} 34-\mathrm{N} 35$	$2.015(3)$	$\mathrm{N} 45-\mathrm{C} 46$	$1.144(5)$
$\mathrm{Cu} 34-\mathrm{N} 40$	$2.021(3)$	$\mathrm{N} 62-\mathrm{C} 63$	$1.152(5)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 12$	$179.6(1)$	$\mathrm{N} 22-\mathrm{Cu} 1-\mathrm{N} 28$	$177.0(1)$
$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 17$	$177.7(1)$	$\mathrm{N} 35-\mathrm{Cu} 34-\mathrm{N} 40$	$91.9(1)$
$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 22$	$92.9(1)$	$\mathrm{N} 57-\mathrm{Cu} 51-\mathrm{N} 62$	$87.0(1)$
$\mathrm{N} 17-\mathrm{Cu} 1-\mathrm{N} 28$	$87.6(1)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N19-H19A \cdots O67 ${ }^{\text {i }}$	0.86	2.00	2.848 (4)	171
N59-H59A \cdots O33 ${ }^{\text {ii }}$	0.86	2.03	2.832 (4)	155
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 27^{\text {iii }}$	0.86	2.06	2.910 (4)	172
$\mathrm{N} 14-\mathrm{H} 14 A \cdots \mathrm{O}^{\text {iv }}$	0.86	2.06	2.886 (5)	161
$\mathrm{N} 9-\mathrm{H} 9 \mathrm{~A} \cdot \cdots \mathrm{O} 49^{\text {v }}$	0.86	2.06	2.819 (4)	146
N54-H54A ${ }^{\text {a }}$ O66 ${ }^{\text {iii }}$	0.86	2.09	2.918 (4)	163

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $-x+1,-y,-z$; (iii) $x-1, y, z$; (iv)
$x+1, y, z ;(\mathrm{v})-x+2,-y,-z$.

Table 3
Comparison of bond distances (\AA) for compounds of the type $\left[M(\mathrm{NL})_{4}\left(\mathrm{NO}_{2} \mathrm{NCN}\right)_{2}\right]$.

M	$\mathrm{Co}-\mathrm{N}_{\mathrm{NL}}$	$\mathrm{Co}-\mathrm{N}_{\text {nca }}$	CSD refcode
Co	$2.098-2.151$	$2.136-2.167$	DOQZIS a, TUSLOI b
Ni	$2.067-2.093$	$2.076-2.110$	DOQZEO a, OFILEU c
Cu	$2.000-2.024$	$2.600-2.683$	BEFBET d, BEFCUK d

Notes: (a) Hvastijová et al. (2000); (b) Hvastijová et al. (2003); (c) Hvastijová et al. (2001); (d) Kohout et al. (1999).

H atoms were positioned geometrically and treated as riding atoms $(\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA)$, with $U_{\text {iso }}(\mathrm{H})$ set at $1.2 U_{\text {eq }}$ of the parent atom.

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97
(Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

The authors thank the Grant Agency of the Slovak Republic (grant Nos. VEGA 1/2449/05 and COSNET 545.03-P).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1193). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Dalai, S., Mukherjee, P. S., Mallah, T., Drew, M. G. B. \& Chaudhuri, N. R. (2002). Inorg. Chem. Commun. 5, 472-474.

Díaz, J. G., Kožíšek, J. \& Langer, V. (2003). Acta Cryst. E59, m241-m243.
Fedin, V. P., Kalinina, I. V., Gerasimenko, A. \& Virovets, A. V. (2002). Inorg. Chim. Acta, 331, 48-51.
Hvastijová, M., Boča, R., Kohout, J., Jäger, L., Císařová, I. \& Kožǐǐek, J. (2003). Inorg. Chim. Acta, 343, 217-223.
Hvastijová, M., Kohout, J., Buchler, J. W., Boča, R., Kožǐšek, J. \& Jäger, L. (1998). Coord. Chem. Rev. 175, 17-42.

Hvastijová, M., Kohout, J., Díaz, G. J., Kožíšek, J. \& Buchler, J. W. (2001). Transition Met. Chem. 26, 430-434.
Hvastijová, M., Kohout, J., Kožǐšek, J., Jäger, L. \& Díaz, G. J. (2000). Polyhedron, 19, 1021-1027.
Jäger, L., Tretner, C., Hartung, H. \& Biedermann, M. (1997). Z. Anorg. Allg. Chem. 623, 1299-1562.
Kohout, J., Hvastijová, M., Kožǐšek, J., Díaz, G. J., Valko, M, Jäger, L. \& Svoboda, I. (1999). Inorg. Chim. Acta, 287, 186-192.
Kohout, J., Jäger, L., Hvastijová, M. \& Kožíšek, J. (2000). J. Coord. Chem. 51, 169-218.
Kožíšek, J., Hansen, N. K. \& Fuess, H. (2002). Acta Cryst. B58, 463-470.
Kožíšek, J., Hvastijová, M., Kohout, J., Mrozinski, J. \& Köhler, H. (1991). J. Chem. Soc. Dalton Trans. pp. 1773-1778.
Lipkowski, J., Kislykh, N. V., Dyadin, Y. A. \& Sheludyakova, L. A. (1999). J. Struct. Chem. 5, 772-780.
Otieno, T., Rettig, S. J., Thompson, R. C. \& Trotter, J. (1993). Inorg. Chem. 32, 4384-4390.
Oxford Diffraction (2001). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Oxford Diffraction (2003). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Potočňák, I., Burčák, M., Massa, W. \& Jäger, L. (2002). Acta Cryst. C58, m523m528.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. \& Jäger, L. (2001). Monatsh. Chem. 132, 315-327.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

